博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
在Android中使用FlatBuffers(上篇)
阅读量:5291 次
发布时间:2019-06-14

本文共 11334 字,大约阅读时间需要 37 分钟。

本文来自。

 

总览

 

先来看一下 FlatBuffers 项目已经为我们提供了什么,而我们在将 FlatBuffers 用到我们的项目中时又需要做什么的整体流程。如下图:

 

 

 

在使用 FlatBuffers 时,我们需要以特殊的格式定义我们的结构化数据,保存为 .fbs 文件。FlatBuffers 项目为我们提供了编译器,可用于将 .fbs 文件编译为Java文件,C++文件等,以用于我们的项目。FlatBuffers 编译器在我们的开发机,比如Ubuntu,Mac上运行。这些源代码文件是基于 FlatBuffers 提供的Java库生成的,同时我们也需要利用这个Java库的一些接口来序列化或解析数据。

 

我们将 FlatBuffers 编译器生成的Java文件及 FlatBuffers 的Java库导入我们的项目,就可以用 FlatBuffers 来对我们的结构化数据执行序列化和反序列化了。尽管每次手动执行 FlatBuffers 编译器生成Java文件非常麻烦,但不像 Protocol Buffers 那样,当前还没有Google官方提供的gradle插件可用。不过,我们这边开发了一个简单的 FlatBuffers gradle插件,后面会简单介绍一下,欢迎大家使用。

 

接下来我们更详细地看一下上面流程中的各个部分。

 

下载、编译 FlatBuffers 编译器

 

我们可以在如下位置:

 

https://github.com/google/flatbuffers/releases

获取官方发布的打包好的版本。针对Windows平台有编译好的可执行安装文件,对其它平台还是打包的源文件。我们也可以指向clone repo的代码,进行手动编译。这里我们从GitHub上clone代码并手动编译编译器:

 

$ git clone https://github.com/google/flatbuffers.gitCloning into 'flatbuffers'...remote: Counting objects: 7340, done.remote: Compressing objects: 100% (46/46), done.remote: Total 7340 (delta 16), reused 0 (delta 0), pack-reused 7290Receiving objects: 100% (7340/7340), 3.64 MiB | 115.00 KiB/s, done.Resolving deltas: 100% (4692/4692), done.Checking connectivity... done.

下载代码之后,我们需要用cmake工具来为flatbuffers生成Makefile文件并编译:

 

$ cd flatbuffers/$ cmake CMakeLists.txt -- The C compiler identification is AppleClang 7.3.0.7030031-- The CXX compiler identification is AppleClang 7.3.0.7030031-- Check for working C compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/cc-- Check for working C compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/cc -- works-- Detecting C compiler ABI info-- Detecting C compiler ABI info - done-- Detecting C compile features-- Detecting C compile features - done-- Check for working CXX compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++-- Check for working CXX compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -- works-- Detecting CXX compiler ABI info-- Detecting CXX compiler ABI info - done-- Detecting CXX compile features-- Detecting CXX compile features - done-- Configuring done-- Generating done-- Build files have been written to: /Users/netease/Projects/OpenSource/flatbuffers$ make && make install

安装之后执行如下命令以确认已经装好:

$ flatc --versionflatc version 1.4.0 (Dec  7 2016)

flatc没有为我们提供 --help 选项,不过加了错误的参数时这个工具会为我们展示详细的用法:

 

$ flatc --helpflatc: unknown commandline argument: --helpusage: flatc [OPTION]... FILE... [-- FILE...]  --binary     -b Generate wire format binaries for any data definitions.  --json       -t Generate text output for any data definitions.  --cpp        -c Generate C++ headers for tables/structs.  --go         -g Generate Go files for tables/structs.  --java       -j Generate Java classes for tables/structs.  --js         -s Generate JavaScript code for tables/structs.  --csharp     -n Generate C# classes for tables/structs.  --python     -p Generate Python files for tables/structs.  --php           Generate PHP files for tables/structs.  -o PATH            Prefix PATH to all generated files.  -I PATH            Search for includes in the specified path.  -M                 Print make rules for generated files.  --version          Print the version number of flatc and exit.  --strict-json      Strict JSON: field names must be / will be quoted,                     no trailing commas in tables/vectors.  --allow-non-utf8   Pass non-UTF-8 input through parser and emit nonstandard                     \x escapes in JSON. (Default is to raise parse error on                     non-UTF-8 input.)  --defaults-json    Output fields whose value is the default when                     writing JSON  --unknown-json     Allow fields in JSON that are not defined in the                     schema. These fields will be discared when generating                     binaries.  --no-prefix        Don't prefix enum values with the enum type in C++.  --scoped-enums     Use C++11 style scoped and strongly typed enums.                     also implies --no-prefix.  --gen-includes     (deprecated), this is the default behavior.                     If the original behavior is required (no include                     statements) use --no-includes.  --no-includes      Don't generate include statements for included                     schemas the generated file depends on (C++).  --gen-mutable      Generate accessors that can mutate buffers in-place.  --gen-onefile      Generate single output file for C#.  --gen-name-strings Generate type name functions for C++.  --escape-proto-ids Disable appending '_' in namespaces names.  --gen-object-api   Generate an additional object-based API.  --cpp-ptr-type T   Set object API pointer type (default std::unique_ptr)  --raw-binary       Allow binaries without file_indentifier to be read.                     This may crash flatc given a mismatched schema.  --proto            Input is a .proto, translate to .fbs.  --schema           Serialize schemas instead of JSON (use with -b)  --conform FILE     Specify a schema the following schemas should be                     an evolution of. Gives errors if not.  --conform-includes Include path for the schema given with --conform    PATH             FILEs may be schemas, or JSON files (conforming to preceding schema)FILEs after the -- must be binary flatbuffer format files.Output files are named using the base file name of the input,and written to the current directory or the path given by -o.example: flatc -c -b schema1.fbs schema2.fbs data.json

创建 .fbs 文件

 

flatc支持将为 Protocol Buffers 编写的 .proto 文件转换为 .fbs 文件,如:

 

$ lsaddressbook.proto$ flatc --proto addressbook.proto $ ls -ltotal 16-rw-r--r--  1 netease  staff  431 12  7 17:21 addressbook.fbs-rw-r--r--@ 1 netease  staff  486 12  1 15:18 addressbook.proto

Protocol Buffers 消息文件中的一些写法,FlatBuffers 编译器还不能很好的支持,如option java_package,option java_outer_classname,和嵌套类。这里我们基于 FlatBuffers 编译器转换的 .proto 文件来获得我们的 .fbs 文件:

 

// Generated from addressbook.protonamespace com.example.tutorial;enum PhoneType : int {  MOBILE = 0,  HOME = 1,  WORK = 2,}namespace com.example.tutorial;table Person {  name:string (required);  id:int;  email:string;  phone:[com.example.tutorial._Person.PhoneNumber];}namespace com.example.tutorial._Person;table PhoneNumber {  number:string (required);  type:int;}namespace com.example.tutorial;table AddressBook {  person:[com.example.tutorial.Person];}root_type AddressBook;

可以参考 来了解 .fbs 文件的详细的写法。

编译 .fbs 文件

 

可以通过如下命令编译 .fbs 文件:

 

$ flatc --java -o out addressbook.fbs

--java用于指定编译的目标编程语言。-o 参数则用于指定输出文件的路径,如过没有提供则将当前目录用作输出目录。FlatBuffers 编译器按照为不同的数据结构声明的namespace生成目录结构。对于上面的例子,会生成如下的这些文件:

 

$ find outp.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Menlo}span.s1 {font-variant-ligatures: no-common-ligatures}$ find out/out/out//comout//com/exampleout//com/example/tutorialout//com/example/tutorial/_Personout//com/example/tutorial/_Person/PhoneNumber.javaout//com/example/tutorial/AddressBook.javaout//com/example/tutorial/Person.javaout//com/example/tutorial/PhoneType.java

在Android项目中使用 FlatBuffers

 

我们将前面由 .fbs 文件生成的Java文件拷贝到我们的项目中。我们前面提到的,FlatBuffers 的Java库比较薄,当前官方并没有发布到jcenter这样的maven仓库中,因而我们需要将这部分代码也拷贝到我们的额项目中。FlatBuffers 的Java库在其repo仓库的 java 目录下。我们有将这部分代码打包,放在公司的maven仓库中,引用的方法为,修改应用程序的 build.gradle:

 

repositories {    maven {        url "http://mvn.hz.netease.com/artifactory/libs-releases/"    }    maven {        url "http://mvn.hz.netease.com/artifactory/libs-snapshots/"    }}dependencies {    compile fileTree(dir: 'libs', include: ['*.jar'])    compile project(':netlib')    testCompile 'junit:junit:4.12'    compile 'com.netease.hearttouch:ht-flatbuffers:0.0.1-SNAPSHOT'}

添加访问 FlatBuffers 的类:

 

package com.netease.volleydemo;import com.example.tutorial.AddressBook;import com.example.tutorial.Person;import com.example.tutorial._Person.PhoneNumber;import com.google.flatbuffers.FlatBufferBuilder;import java.nio.ByteBuffer;/** * Created by hanpfei0306 on 16-12-5. */public class AddressBookFlatBuffers {    public static byte[] encodeTest(String[] names) {        FlatBufferBuilder builder = new FlatBufferBuilder(0);        int[] personOffsets = new int[names.length];        for (int i = 0; i < names.length; ++ i) {            int name = builder.createString(names[i]);            int email = builder.createString("zhangsan@gmail.com");            int number1 = builder.createString("0157-23443276");            int type1 = 1;            int phoneNumber1 = PhoneNumber.createPhoneNumber(builder, number1, type1);            int number2 = builder.createString("136183667387");            int type2 = 0;            int phoneNumber2 = PhoneNumber.createPhoneNumber(builder, number2, type2);            int[] phoneNubers = new int[2];            phoneNubers[0] = phoneNumber1;            phoneNubers[1] = phoneNumber2;            int phoneNumbersPos = Person.createPhoneVector(builder, phoneNubers);            int person = Person.createPerson(builder, name, 13958235, email, phoneNumbersPos);            personOffsets[i] = person;        }        int persons = AddressBook.createPersonVector(builder, personOffsets);        AddressBook.startAddressBook(builder);        AddressBook.addPerson(builder, persons);        int eab = AddressBook.endAddressBook(builder);        builder.finish(eab);        byte[] data = builder.sizedByteArray();        return data;    }    public static byte[] encodeTest(String[] names, int times) {        for (int i = 0; i < times - 1; ++ i) {            encodeTest(names);        }        return encodeTest(names);    }    public static AddressBook decodeTest(byte[] data) {        AddressBook addressBook = null;        ByteBuffer byteBuffer = ByteBuffer.wrap(data);        addressBook = AddressBook.getRootAsAddressBook(byteBuffer);        return addressBook;    }    public static AddressBook decodeTest(byte[] data, int times) {        AddressBook addressBook = null;        for (int i = 0; i < times; ++ i) {            addressBook = decodeTest(data);        }        return addressBook;    }}

使用 flatbuf-gradle-plugin

 

我们有开发一个 FlatBuffers 的gradle插件,以方便开发,。这个插件的设计有参考Google的protobuf-gradle-plugin,功能及用法也与protobuf-gradle-plugin类似。

 

应用flatbuf-gradle-plugin

 

修改应用程序的 build.gradle 以应用flatbuf-gradle-plugin

 

  1. 为buildscript添加对flatbuf-gradle-plugin的依赖:
    buildscript { repositories {     maven {         url "http://mvn.hz.netease.com/artifactory/libs-releases/"     }     maven {         url "http://mvn.hz.netease.com/artifactory/libs-snapshots/"     } } dependencies {     classpath 'com.netease.hearttouch:ht-flatbuf-gradle-plugin:0.0.1-SNAPSHOT' }}
  2. apply plugin: 'com.android.application'后面应用flatbuf的plugin:
    apply plugin: 'com.android.application'apply plugin: 'com.netease.flatbuf'
  3. 添加flatbuf块,对flatbuf-gradle-plugin的执行做配置:

    flatbuf { flatc {     path = '/usr/local/bin/flatc' } generateFlatTasks {     all().each { task ->         task.builtins {             remove java         }         task.builtins {             java { }         }     } }}

    flatc块用于配置 FlatBuffers 编译器,这里我们指定用我们之前手动编译的编译器。 task.builtins的块必不可少,这个块用于指定我们要为那些编程语言生成代码,这里我们为Java生成代码。

  4. 指定 .fbs 文件的路径
    sourceSets {     main {         flat {             srcDir 'src/main/flat'         }     } }
    我们将 FlatBuffers 的IDL文件放在src/main/flat目录下。

 

这样我们就不用再那么麻烦每次手动执行flatc了。

 

 

相关阅读:

 

网易云新用户大礼包:

本文来自网易云社区,经作者韩鹏飞授权发布。

转载于:https://www.cnblogs.com/163yun/p/9487302.html

你可能感兴趣的文章
快来熟练使用 Mac 编程
查看>>
第二周
查看>>
断言简介
查看>>
Node.js 入门:Express + Mongoose 基础使用
查看>>
plsql使用,为什么可以能看见其他用户的表
查看>>
一步步教你轻松学奇异值分解SVD降维算法
查看>>
Scripting Java #3:Groovy与invokedynamic
查看>>
2014-04-21-阿里巴巴暑期实习-后台研发-二面经验
查看>>
数据结构中线性表的基本操作-合并两个线性表-依照元素升序排列
查看>>
使用pager进行分页
查看>>
吐医疗器械研发可配置性需求的槽点
查看>>
UVA - 1592 Database
查看>>
机器翻译评价指标 — BLEU算法
查看>>
机器学习基石(9)--Linear Regression
查看>>
Min Stack
查看>>
从LazyPhp说起
查看>>
Fine Uploader文件上传组件
查看>>
Spring Boot与Spring的区别
查看>>
查看linux 之mysql 是否安装的几种方法
查看>>
javascript中的传递参数
查看>>